Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.717
Filtrar
1.
PLoS One ; 19(4): e0294179, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630697

RESUMO

This study investigated the suitability of recycled asphalt pavement and polyethylene wastes as coarse aggregate in asphaltic concrete by evaluating the impact of the use of polyethylene polymer wastes and recycled asphalt pavement composite as aggregates on the physical and mechanical properties of the asphaltic concrete. The physical characteristics of the aggregate and bitumen were determined using relevant parametric tests. Recycled asphalt pavement was used to make asphaltic concrete samples using LDPE at 5%, 10%, 15%, RAP at 5% and HDPE at 5%, 10%, 15%, and a mixture of LDPE + HDPE at 5+5%, 7.5+7.5% and 10+10% RAP at 5% as additives. Marshall Stability test was conducted to assess the mechanical strength of the asphaltic concrete, and the results included information on the aggregate's stability, flow, density, voids filled with bitumen, voids filled with air, and voids in mineral aggregate. In addition, the surface and crystal structure of the aggregates was studied by carrying out a microscopic examination with a Scanning Electron Microscope (SEM) and X-Ray diffraction (XRD). The results obtained from this study demonstrated that RAP, HDPE & LDPE are viable conventional aggregate substitute for asphalt concrete production.


Assuntos
Materiais de Construção , Polietileno , Reciclagem/métodos , Hidrocarbonetos/química
2.
Environ Sci Pollut Res Int ; 31(12): 18785-18796, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38349495

RESUMO

Recovering renewable chemicals from de-fatted microalgal residue derived from lipid extraction within the algal-derived biofuel sector is crucial, given the rising significance of microalgal-derived biodiesel as a potential substitute for petroleum-based liquid fuels. As a circular economy strategy, effective valorization of de-fatted biomass significantly improves the energetic and economic facets of establishing a sustainable algal-derived biofuel industry. In this scenario, this study investigates flash catalytic pyrolysis as a sustainable pathway for valorizing Scenedesmus sp. post-extraction residue (SPR), potentially yielding a bio-oil enriched with upgraded characteristics, especially renewable aromatic hydrocarbons. In the scope of this study, volatile products from catalytic and non-catalytic flash pyrolysis were characterized using a micro-furnace type temperature programmable pyrolyzer coupled with gas chromatographic separation and mass spectrometry detection (Py-GC/MS). Flash pyrolysis of SPR resulted in volatile products with elevated oxygen and nitrogen compounds with concentrations of 46.4% and 26.4%, respectively. In contrast, flash pyrolysis of lyophilized microalgal biomass resulted in lower concentrations of these compounds, with 40.9% oxygen and 17.3% nitrogen. Upgrading volatile pyrolysis products from SPR led to volatile products comprised of only hydrocarbons, while completely removing oxygen and nitrogen-containing compounds. This was achieved by utilizing a low-cost HZSM-5 catalyst within a catalytic bed at 500 °C. Catalytic experiments also indicate the potential conversion of SPR into a bio-oil rich in monocyclic aromatic hydrocarbons, primarily BETX, with toluene comprising over one-third of its composition, thus presenting a sustainable pathway for producing an aromatic hydrocarbon-rich bio-oil derived from SPR. Another significant finding was that 97.8% of the hydrocarbon fraction fell within the gasoline range (C5-C12), and 35.5% fell within the jet fuel range (C8-C16). Thus, flash catalytic pyrolysis of SPR exhibits significant promise for application in drop-in biofuel production, including green gasoline and bio-jet fuel, aligning with the principles of the circular economy, green chemistry, and bio-refinery.


Assuntos
Hidrocarbonetos Aromáticos , Óleos de Plantas , Polifenóis , Scenedesmus , Scenedesmus/metabolismo , Pirólise , Gasolina , Biocombustíveis , Temperatura Alta , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos/química , Catálise , Nitrogênio , Oxigênio , Biomassa
3.
J Hazard Mater ; 469: 133889, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422735

RESUMO

In this study, sulfur-containing iron carbon nanocomposites (S@Fe-CN) were synthesized by calcining iron-loaded biomass and utilized to activate persulfate (PS) for the combined chemical oxidation and microbial remediation of petroleum-polluted soil. The highest removal efficiency of total petroleum hydrocarbons (TPHs) was achieved at 0.2% of activator, 1% of PS and 1:1 soil-water ratio. The EPR and quenching experiments demonstrated that the degradation of TPHs was caused by the combination of 1O2,·OH, SO4·-, and O2·-. In the S@Fe-CN activated PS (S@Fe-CN/PS) system, the degradation of TPHs underwent two phases: chemical oxidation (days 0 to 3) and microbial degradation (days 3 to 28), with kinetic constants consistent with the pseudo-first-order kinetics of chemical and microbial remediation, respectively. In the S@Fe-CN/PS system, soil enzyme activities decreased and then increased, indicating that microbial activities were restored after chemical oxidation under the protection of the activators. The microbial community analysis showed that the S@Fe-CN/PS group affected the abundance and structure of microorganisms, with the relative abundance of TPH-degrading bacteria increased after 28 days. Moreover, S@Fe-CN/PS enhanced the microbial interactions and mitigated microbial competition, thereby improving the ability of indigenous microorganisms to degrade TPHs.


Assuntos
Petróleo , Poluentes do Solo , Ferro/química , Poluentes do Solo/metabolismo , Poluição Ambiental , Hidrocarbonetos/química , Solo/química
4.
Environ Pollut ; 342: 122893, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952924

RESUMO

Petroleum-impacted soils pose several hazards and require fast, effective, and versatile remediation techniques. Electron beam irradiation provides a novel means of heating soil and inducing non-equilibrium chemical reactions and has previously been applied to environmental remediation. In this work a scalable process for remediation of petroleum-impacted soils using a 100 kW, 3 MeV industrial electron beam is investigated. The process involves conveying impacted soil through a beam at a controllable rate to achieve a desired dose of approximately 1000 kGy. Reductions to less than 1% Total Petroleum Hydrocarbon (TPH) content from an initial TPH of 3.3% were demonstrated for doses of 710-1370 kGy. These reductions were achieved in in conditions equivalent to 4 m3 per hour, demonstrating the applicability of this technique to remediation sites. TPH reduction appeared to be temperature-dependent but not heavily dependent on dose rate, with reductions of 96% achieved for a dose of 1370 kGy and peak temperature of 540 °C. The performance of the process at high dose rates suggests that it can be incorporated into remediation of sites for which a high rate of material processing is required with a relatively small device footprint.


Assuntos
Recuperação e Remediação Ambiental , Petróleo , Poluentes do Solo , Solo/química , Elétrons , Poluentes do Solo/análise , Hidrocarbonetos/química , Microbiologia do Solo , Biodegradação Ambiental
5.
J Nat Prod ; 87(1): 85-97, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-37957119

RESUMO

The epicuticle of insects is usually coated with a complex mixture of hydrocarbons, primarily straight-chain and methyl-branched alkanes and alkenes. We were interested in whether springtails (Collembola), a sister class of the insects, also use such compounds. We focused here on Vertagopus sarekensis, an abundant Isotomidae species in European high alpine regions, exhibiting coordinated group behavior and migration. This coordination, suggesting chemical communication, made the species interesting for our study on epicuticular hydrocarbons in springtails with different degrees of group behavior. We isolated a single hydrocarbon from its surface, which is the major epicuticular lipid. The structure was deduced by NMR analysis and GC/MS including derivatization. Total synthesis confirmed the structure as cis,cis-3,4,13,14-bismethylene-24-methyldotriacontane (4, sarekensane). The GC/MS analyses of some other cyclopropane hydrocarbons also synthesized showed the close similarity of both mass spectra and gas chromatographic retention indices of alkenes and cyclopropanes. Therefore, analyses of cuticular alkenes must be performed with appropriate derivatization to distinguish these two types of cuticular hydrocarbons. Sarekensane (4) is the first nonterpenoid cuticular hydrocarbon from Collembola that is biosynthesized via the fatty acid pathway, as are insect hydrocarbons, and contains unprecedented cyclopropane rings in the chain, not previously reported from arthropods.


Assuntos
Artrópodes , Animais , Artrópodes/metabolismo , Hidrocarbonetos/análise , Hidrocarbonetos/química , Hidrocarbonetos/metabolismo , Alcenos/química , Ciclopropanos , Insetos/química , Cromatografia Gasosa-Espectrometria de Massas , Ácidos Graxos
6.
J Pept Sci ; 30(1): e3533, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37431279

RESUMO

Aurein1.2 is secreted by the Australian tree frog Litoria aurea and is active against a broad range of infectious microbes including bacteria, fungi, and viruses. Its antifungal potency has garnered considerable interest in developing novel classes of natural antifungal agents to fight pathogenic infection by fungi. However, serious pharmacological hurdles remain, hindering its clinical translation. To alleviate its susceptibility to proteolytic degradation and improve its antifungal activity, six conformationally locked peptides were synthesized through hydrocarbon stapling modification and evaluated for their physicochemical and antifungal parameters. Among them, SAU2-4 exhibited significant improvement in helicity levels, protease resistance, and antifungal activity compared to the template linear peptide Aurein1.2. These results confirmed the prominent role of hydrocarbon stapling modification in the manipulation of peptide pharmacological properties and enhanced the application potential of Aurein1.2 in the field of antifungal agent development.


Assuntos
Antifúngicos , Peptídeos , Antifúngicos/farmacologia , Antifúngicos/química , Austrália , Peptídeos/farmacologia , Peptídeos/química , Hidrocarbonetos/química , Bactérias , Testes de Sensibilidade Microbiana
7.
J Environ Manage ; 351: 119768, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38100858

RESUMO

The most common type of environmental contamination is petroleum hydrocarbons. Sustainable and environmentally friendly treatment strategies must be explored in light of the increasing challenges of toxic and critical wastewater contamination. This paper deals with the bacteria-producing biosurfactant and their employment in the bioremediation of hydrocarbon-containing waste through a microbial fuel cell (MFC) with Pseudomonas aeruginosa (exoelectrogen) as co-culture for simultaneous power generation. Staphylococcus aureus is isolated from hydrocarbon-contaminated soil and is effective in hydrocarbon degradation by utilizing hydrocarbon (engine oil) as the only carbon source. The biosurfactant was purified using silica-gel column chromatography and characterised through FTIR and GCMS, which showed its glycolipid nature. The isolated strains are later employed in the MFCs for the degradation of the hydrocarbon and power production simultaneously which has shown a power density of 6.4 W/m3 with a 93% engine oil degradation rate. A biogenic Fe2O3 nanoparticle (NP) was synthesized using Bambusa arundinacea shoot extract for anode modification. It increased the power output by 37% and gave the power density of 10.2 W/m3. Thus, simultaneous hydrocarbon bioremediation from oil-contamination and energy recovery can be achieved effectively in MFC with modified anode.


Assuntos
Fontes de Energia Bioelétrica , Petróleo , Biodegradação Ambiental , Técnicas de Cocultura , Bactérias/metabolismo , Petróleo/análise , Hidrocarbonetos/química , Eletrodos
8.
Arch Toxicol ; 98(2): 409-424, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38099972

RESUMO

Arsenic, which can be divided into inorganic and organic arsenic, is a toxic metalloid that has been identified as a human carcinogen. A common source of arsenic exposure in seafood is arsenolipid, which is a complex structure of lipid-soluble organic arsenic compounds. At present, the known arsenolipid species mainly include arsenic-containing fatty acids (AsFAs), arsenic-containing hydrocarbons (AsHCs), arsenic glycophospholipids (AsPLs), and cationic trimethyl fatty alcohols (TMAsFOHs). Furthermore, the toxicity between different species is unique. However, the mechanism underlying arsenolipid toxicity and anabolism remain unclear, as arsenolipids exhibit a complex structure, are present at low quantities, and are difficult to extract and detect. Therefore, the objective of this overview is to summarize the latest research progress on methods to evaluate the toxicity and analyze the main speciation of arsenolipids in seafood. In addition, novel insights are provided to further elucidate the speciation, toxicity, and anabolism of arsenolipids and assess the risks on human health.


Assuntos
Arsênio , Arsenicais , Humanos , Arsênio/toxicidade , Ácidos Graxos/toxicidade , Hidrocarbonetos/química , Alimentos Marinhos/toxicidade , Alimentos Marinhos/análise
9.
Environ Res ; 239(Pt 2): 117357, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37848081

RESUMO

This paper introduces a transformative hydrodeoxygenation process for the simultaneous recovery of oil and iron from hazardous rolling oil sludge (ROS). Leveraging the inherent catalytic capabilities of iron/iron oxide nanoparticles in the sludge, our process enables the conversion of fatty acids and esters into hydrocarbons under conditions of 4.5 MPa, 330 °C, and 500 rpm. This reaction triggers nanoparticle aggregation and subsequent separation from the oil phase, allowing for effective resource recovery. In contrast to conventional techniques, this method achieves a high recovery rate of 98.3% while dramatically reducing chemical reagent consumption. The reclaimed petroleum and iron-ready for high-value applications-are worth 3910 RMB/ton. Moreover, the process facilitates the retrieval of nanoscale magnetic Fe and Fe0 particles, and the oil, with an impressive hydrocarbon content of 87.8%, can be further refined. This energy-efficient approach offers a greener, more sustainable pathway for ROS valorization.


Assuntos
Ferro , Petróleo , Esgotos , Espécies Reativas de Oxigênio , Hidrocarbonetos/química
10.
J Exp Biol ; 226(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37497773

RESUMO

An insect's cuticle is typically covered in a layer of wax prominently featuring various hydrocarbons involved in desiccation resistance and chemical communication. In Argentine ants (Linepithema humile), cuticular hydrocarbons (CHCs) communicate colony identity, but also provide waterproofing necessary to survive dry conditions. Theory suggests different CHC compound classes have functional trade-offs, such that selection for compounds used in communication would compromise waterproofing, and vice versa. We sampled sites of invasive L. humile populations from across California to test whether CHC differences between them can explain differences in their desiccation survival. We hypothesized that CHCs whose abundance was correlated with environmental factors would determine survival during desiccation, but our regression analysis did not support this hypothesis. Interestingly, we found the abundance of most CHCs had a negative correlation with survival, regardless of compound class. We suggest that the CHC differences between L. humile nests in California are insufficient to explain their differential survival against desiccation, and that body mass is a better predictor of desiccation survival at this scale of comparison.


Assuntos
Formigas , Animais , Formigas/química , Dessecação , Hidrocarbonetos/química , Tamanho Corporal
11.
ChemSusChem ; 16(20): e202300981, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37419863

RESUMO

Enzymatic Fisher-Tropsch (FT) process catalyzed by vanadium (V)-nitrogenase can convert carbon monoxide (CO) to longer-chain hydrocarbons (>C2) under ambient conditions, although this process requires high-cost reducing agent(s) and/or the ATP-dependent reductase as electron and energy sources. Using visible light-activated CdS@ZnS (CZS) core-shell quantum dots (QDs) as alternative reducing equivalent for the catalytic component (VFe protein) of V-nitrogenase, we first report a CZS : VFe biohybrid system that enables effective photo-enzymatic C-C coupling reactions, hydrogenating CO into hydrocarbon fuels (up to C4) that can be hardly achieved with conventional inorganic photocatalysts. Surface ligand engineering optimizes molecular and opto-electronic coupling between QDs and the VFe protein, realizing high efficiency (internal quantum yield >56 %), ATP-independent, photon-to-fuel production, achieving an electron turnover number of >900, that is 72 % compared to the natural ATP-coupled transformation of CO into hydrocarbons by V-nitrogenase. The selectivity of products can be controlled by irradiation conditions, with higher photon flux favoring (longer-chain) hydrocarbon generation. The CZS : VFe biohybrids not only can find applications in industrial CO removal for high-value-added chemical production by using the cheap, renewable solar energy, but also will inspire related research interests in understanding the molecular and electronic processes in photo-biocatalytic systems.


Assuntos
Monóxido de Carbono , Nitrogenase , Oxirredução , Nitrogenase/química , Nitrogenase/metabolismo , Hidrocarbonetos/química , Trifosfato de Adenosina/metabolismo
12.
Environ Sci Technol ; 57(25): 9266-9276, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37267462

RESUMO

Due to the sudden nature of oil spills, few controlled studies have documented how oil weathers immediately following accidental release into a natural lake environment. Here, we evaluated the weathering patterns of Cold Lake Winter Blend, a diluted bitumen (dilbit) product, by performing a series of controlled spills into limnocorrals installed in a freshwater lake in Northern Ontario, Canada. Using a regression-based design, we added seven different dilbit volumes, ranging from 1.5 to 180 L, resulting in oil-to-water ratios between 1:71,000 (v/v) and 1:500 (v/v). We monitored changes in the composition of various petroleum hydrocarbons (PHCs), including n-alkanes, polycyclic aromatic hydrocarbons (PAHs), and oil biomarkers in dilbit over time, as it naturally weathered for 70 days. Depletion rate constants (kD) of n-alkanes and PAHs ranged from 0.0009 to 0.41 d-1 and 0.0008 to 0.38 d-1, respectively. There was no significant relationship between kD and spill volume, suggesting that spill size did not influence the depletion of petroleum hydrocarbons from the slick. Diagnostic ratios calculated from concentrations of n-alkanes, isoprenoids, and PAHs indicated that evaporation and photooxidation were major processes contributing to dilbit weathering, whereas dissolution and biodegradation were less important. These results demonstrate the usefulness of large scale field studies carried out under realistic environmental conditions to elucidate the role of different weathering processes following a dilbit spill.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Hidrocarbonetos/química , Lagos/química , Alcanos , Ontário , Poluentes Químicos da Água/análise
13.
J Med Chem ; 66(13): 8498-8509, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37357499

RESUMO

Different stapling techniques have been used recently to address the subpar performance of antimicrobial peptides (AMPs) in clinical trials with ample focus on α-helical AMPs. In comparison, a systematic evaluation of such strategies on ß-hairpin AMPs is lacking. Herein, we report the design, synthesis, and evaluation of a library of all-hydrocarbon-stapled ß-hairpin AMPs with variation in key parameters intended as potent therapeutics against drug-resistant pathogens. We observed an interesting interplay between the activity, stability, and structural strength. Single-stapled peptides with a 6-carbon staple at peptide termini such as 5(c6) displayed the most potent activity against colistin-resistant clinical isolates. Using imaging techniques, we observed translocation of 5(c6) across bacterial membranes without causing extensive damage. Overall, we have engineered novel all-hydrocarbon-stapled ß-hairpin AMPs with structural and functional proficiency that can effectively combat resistant pathogens, with findings from this study a point of reference for future interests in developing novel ß-hairpin AMPs.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/química , Bactérias Gram-Negativas , Bactérias , Testes de Sensibilidade Microbiana , Hidrocarbonetos/química , Antibacterianos/química
14.
Molecules ; 28(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298984

RESUMO

The integration of active cooling systems in super or hypersonic aircraft using endothermic hydrocarbon fuels is considered an effective way to relieve the thermal management issues caused by overheating. When the temperature of aviation kerosene exceeds 150 °C, the oxidation reaction of fuel is accelerated, forming insoluble deposits that could cause safety hazards. This work investigates the deposition characteristic as well as the morphology of the deposits formed by thermal-stressed Chinese RP-3 aviation kerosene. A microchannel heat transfer simulation device is used to simulate the heat transfer process of aviation kerosene under various conditions. The temperature distribution of the reaction tube was monitored by an infrared thermal camera. The properties and morphology of the deposition were analyzed by scanning electron microscopy and Raman spectroscopy. The mass of the deposits was measured using the temperature-programmed oxidation method. It is observed that the deposition of RP-3 is highly related to dissolved oxygen content (DOC) and temperature. When the outlet temperature increased to 527 °C, the fuel underwent violent cracking reactions, and the structure and morphology of deposition were significantly different from those caused by oxidation. Specifically, this study reveals that the structure of the deposits caused by short-to-medium term oxidation are dense, which is different from long-term oxidative deposits.


Assuntos
Aviação , Querosene , Hidrocarbonetos/química , Microscopia Eletrônica de Varredura , Temperatura
15.
J Comp Physiol B ; 193(3): 261-269, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37120421

RESUMO

As small-bodied terrestrial organisms, insects face severe desiccation risks in arid environments, and these risks are increasing under climate change. Here, we investigate the physiological, chemical, and behavioral mechanisms by which harvester ants, one of the most abundant arid-adapted insect groups, cope with desiccating environmental conditions. We aimed to understand how body size, cuticular hydrocarbon profiles, and queen number impact worker desiccation resistance in the facultatively polygynous harvester ant, Pogonomyrmex californicus. We measured survival at 0% humidity of field-collected worker ants sourced from three closely situated populations within a semi-arid region of southern California. These populations vary in queen number, with one population dominated by multi-queen colonies (primary polygyny), one population dominated by single-queen colonies, and one containing an even mix of single- and multi-queen colonies. We found no effect of population on worker survival in desiccation assays, suggesting that queen number does not influence colony desiccation resistance. Across populations, however, body mass and cuticular hydrocarbon profiles significantly predicted desiccation resistance. Larger-bodied workers survived longer in desiccation assays, emphasizing the importance of reduced surface area-to-volume ratios in maintaining water balance. Additionally, we observed a positive relationship between desiccation resistance and the abundance of n-alkanes, supporting previous work that has linked these high-melting point compounds to improved body water conservation. Together, these results contribute to an emerging model explaining the physiological mechanisms of desiccation resistance in insects.


Assuntos
Formigas , Animais , Formigas/fisiologia , Dessecação , Casamento , Hidrocarbonetos/química , Alcanos , Reprodução/fisiologia
16.
J Environ Manage ; 339: 117928, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37060692

RESUMO

Phytoremediation of total petroleum hydrocarbons (TPHs) contamination is a process that uses the synergistic action of plants and rhizosphere microorganisms to degrade, absorb and stabilize pollutants in the soil, and has received increasing attention in recent years. However, this technology still has some challenges under certain conditions (e.g., highly alkaline and saline environments). The present study was selected three native plant species (alfalfa, tall fescue, and ryegrass) to remediate petroleum pollutants in greenhouse pot experiments. The results indicate that TPH contamination not only inhibited plant growth, soil chemical properties and soil fertility (i.e. lower plant biomass, chlorophyll, pH, and electrical conductivity), but also increased the malondialdehyde, glutathione, and antioxidant enzyme activities (catalase and polyphenol oxidase). Further, correlation analysis results illustrated that TPH removal was strongly positively correlated with chlorophyll, soil fertility, and total organic carbon, but was negatively correlated with dehydrogenase, polyphenol oxidase, pH, and electrical conductivity. The highest TPHs removal rate (74.13%) was exhibited by alfalfa, followed by tall fescue (61.79%) and ryegrass (57.28%). The degradation rates of short-chain alkanes and low rings polycyclic aromatic hydrocarbons (PAHs) were substantially higher than those of long-chain alkanes and high rings PAHs. The findings of this study provide valuable insights into petroleum decontamination strategies in the highly saline - alkali environments.


Assuntos
Poluentes Ambientais , Lolium , Petróleo , Poluentes do Solo , Álcalis , Solo/química , Petróleo/análise , Poluentes do Solo/análise , Plantas/metabolismo , Biodegradação Ambiental , Microbiologia do Solo , Hidrocarbonetos/química , Alcanos , Poluentes Ambientais/análise
17.
Environ Sci Pollut Res Int ; 30(23): 64300-64312, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37067708

RESUMO

Soil bacteria that produce biosurfactants can use total petroleum hydrocarbons (TPHs) as a carbon source. This study demonstrated that biosurfactants produced by Burkholderia sp. enhanced the recovery and synergism of soil microbial community, resulting in fast degradation of macro alkanes. Experiments were carried out by applying bio-stimulation after pre-oxidation to investigate the effects of nutrient addition on biosurfactant production, TPH degradation, and microbial community succession in the soil. The results presented that bio-stimulation could produce biosurfactants in high C/N (32.6) and C/H (13.3) conversion after pre-oxidation and increased the total removal rate of TPH (10.59-46.71%). The number of total bacteria had a rapid increase trend (2.94-8.50 Log CFU/g soil). The degradation rates of macro alkanes showed a 4.0-fold (48.07 mg/kg·d-1 versus 186.48 mg/kg·d-1) increase, and the bioremediation time of degrading macro alkanes saved 166 days. Further characterization revealed that the biosurfactants produced by Burkholderia sp. could activate indigenous bacteria to degrade macro alkanes rapidly. A shift in phylum from Actinomycetes to Proteobacteria was observed during bioremediation. The average relative abundance of the microbial community increased from 36.24 to 64.96%, and the predominant genus tended to convert from Allorhizobium (8.57%) to Burkholderia (15.95%) and Bacillus (15.70%). The co-occurrence network and Pearson correlation analysis suggested that the synergism of microbial community was the main reason for the fast degradation of macro alkanes in petroleum-contaminated soils. Overall, this study indicated the potential of the biosurfactants to activate and enhance the recovery of indigenous bacteria after pre-oxidation, which was an effective method to remediate petroleum-contaminated soils.


Assuntos
Burkholderia , Petróleo , Poluentes do Solo , Alcanos , Burkholderia/metabolismo , Poluentes do Solo/análise , Microbiologia do Solo , Hidrocarbonetos/química , Biodegradação Ambiental , Petróleo/metabolismo , Solo/química
18.
J Mol Graph Model ; 121: 108450, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36907016

RESUMO

The current work aimed to predict three critical properties: critical temperature (Tc), critical volume (Vc), and critical pressure (Pc) of pure hydrocarbons. A multi-layer perceptron artificial neural network (MLP-ANN) has been adopted as a nonlinear modeling technique and computational approach based on a few relevant molecular descriptors. A set of diverse data points was used to build three QSPR-ANN models, including 223 points for Tc, Vc, and 221 for Pc. The entire database was randomly split into two subsets: 80% for the training set and 20% for the testing set. A large number of 1666 molecular descriptors were calculated and then reduced by a statistical methodology based on several phases to retain them into a reasonable number of relevant descriptors, wherein about 99% of initial descriptors were excluded. Thus, the Quasi-Newton backpropagation (BFGS) algorithm was applied to train the ANN structure. The results of three QSPR-ANN models showed good precision, confirmed by the high values of determination coefficient (R2) ranging from 0.9990 to 0.9945, and the low values of calculated errors, such as the Mean Absolute Percentage Error (MAPE) that ranged from 2.2497 to 0.7424% for the best three models of Tc, Vc, and Pc. The weight sensitivity analysis method was applied to know the contribution of each input descriptor individually or by class on each appropriate QSPR-ANN model. Moreover, the applicability domain (AD) method was also used with a strict limit of standardized residual values (di = ±2). However, the results were promising, with nearly 88% of the data points validated within the AD range. Finally, the results of the proposed QSPR-ANN models were compared with other well-known QSPR or ANN models for each property. Consequently, our three models provided satisfactory results, outperforming most of the models mentioned in this comparison. This computational approach can be applied in petroleum engineering and other related fields to accurately determine the critical properties of pure hydrocarbons: Tc, Vc, and Pc.


Assuntos
Algoritmos , Relação Quantitativa Estrutura-Atividade , Redes Neurais de Computação , Hidrocarbonetos/química , Temperatura
19.
Biodegradation ; 34(5): 417-430, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36964873

RESUMO

The present study aimed to evaluate the best strategy to enhance the degradation rate of heavy petroleum hydrocarbons (HPH) contaminated soil in a landfarming plant. Samples of real contaminated soil, further spiked with HPH, were treated in mesocosm reactors simulating the landfarming system. One reactor was operated without any modification compared to the real landfarming plant. The other three reactors were operated with different strategies to improve the removal rate: biostimulation (BS) through the addition of nitrogen and phosphorus; bioaugmentation (BA) with the inoculation of sludge produced in the treatment of the process water from the oil re-fining plant of the same industrial area; combination of biostimulation and bioaugmentation (BAS). The biostimulation (BS) was the most effective strategy, leading to a reduction of the remediation time by 35% as compared to the traditional treatment. Bioaugmentation (BA) also provided positive effects leading to a reduction of the remediation time by 24%; its performance improved further when the addition of sludge was combined with the increase of phosphorous (BAS). Therefore, the key tool was represented by the phosphorous availability, whereas the application of sludge was most useful to provide waste with a new possibility of reuse, thus fulfilling the principles of the circular economy. The final characterization showed that the treated soil was suitable for reuse in industrial areas according to the legislation in force.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Esgotos , Hidrocarbonetos/química , Hidrocarbonetos/metabolismo , Petróleo/análise , Solo/química , Poluentes do Solo/metabolismo , Microbiologia do Solo
20.
Artigo em Inglês | MEDLINE | ID: mdl-36901535

RESUMO

Based on the examination of the basic properties, the solvent extraction process (SEP) was applied with high efficiency in the extraction of bitumen from Indonesian oil sands. To separate the oil sands, different organic solvents were first screened, and the extraction effects were analyzed to select a suitable solvent. Then, the effects of operating conditions on the extraction rate of bitumen were investigated. Finally, the compositions and structures of the bitumen obtained under suitable conditions were analyzed. The results showed that the Indonesian oil sands were oil-wet oil sands with a bitumen content of 24.93%, containing a large number of asphaltenes and resins with high polarity and complex structures. The separation performance was affected by different organic solvents and operating conditions. It was shown that the closer the structure and polarity of the selected solvent is to the solute, the better the extraction effect. The extraction rate of bitumen reached 18.55% when toluene was used as the extraction solvent under the operating conditions of V (solvent):m (oil sands) 3:1, temperature 40 °C, stirring velocity 300 r/min, time 30 min. The method could also be applied to the separation of other oil-wet oil sands. The compositions and structures of bitumen can guide the separation and comprehensive use of industrial oil sands.


Assuntos
Hidrocarbonetos , Campos de Petróleo e Gás , Indonésia , Hidrocarbonetos/química , Solventes , Alberta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...